Thermodynamically feasible kinetic models of reaction networks.
نویسندگان
چکیده
The dynamics of biological reaction networks are strongly constrained by thermodynamics. An holistic understanding of their behavior and regulation requires mathematical models that observe these constraints. However, kinetic models may easily violate the constraints imposed by the principle of detailed balance, if no special care is taken. Detailed balance demands that in thermodynamic equilibrium all fluxes vanish. We introduce a thermodynamic-kinetic modeling (TKM) formalism that adapts the concepts of potentials and forces from irreversible thermodynamics to kinetic modeling. In the proposed formalism, the thermokinetic potential of a compound is proportional to its concentration. The proportionality factor is a compound-specific parameter called capacity. The thermokinetic force of a reaction is a function of the potentials. Every reaction has a resistance that is the ratio of thermokinetic force and reaction rate. For mass-action type kinetics, the resistances are constant. Since it relies on the thermodynamic concept of potentials and forces, the TKM formalism structurally observes detailed balance for all values of capacities and resistances. Thus, it provides an easy way to formulate physically feasible, kinetic models of biological reaction networks. The TKM formalism is useful for modeling large biological networks that are subject to many detailed balance relations.
منابع مشابه
Construction of feasible and accurate kinetic models of metabolism: A Bayesian approach
Kinetic models are essential to quantitatively understand and predict the behaviour of metabolic networks. Detailed and thermodynamically feasible kinetic models of metabolism are inherently difficult to formulate and fit. They have a large number of heterogeneous parameters, are non-linear and have complex interactions. Many powerful fitting strategies are ruled out by the intractability of th...
متن کاملA General Framework for Thermodynamically Consistent Parameterization and Efficient Sampling of Enzymatic Reactions
Kinetic models provide the means to understand and predict the dynamic behaviour of enzymes upon different perturbations. Despite their obvious advantages, classical parameterizations require large amounts of data to fit their parameters. Particularly, enzymes displaying complex reaction and regulatory (allosteric) mechanisms require a great number of parameters and are therefore often represen...
متن کاملOptimal rate pathways Metabolic states with maximal specific rate carry flux through an elementary flux mode In collaboration with :
Specific product formation rates and cellular growth rates are important maximization targets in biotechnology and microbial evolution. Maximization of a specific rate, i.e. a rate expressed per unit biomass amount, requires expression of particular metabolic pathways at optimal enzyme concentrations. In contrast to the prediction of maximal product yields, any prediction of optimal specific ra...
متن کاملDevelopment of a thermodynamically consistent kinetic model for reactions in the solid oxide fuel cell
The parameter estimation using the traditional kinetic modeling of complex reaction systems will give incorrect results if the reaction mechanism contains a loop. In this work, a thermodynamically consistent kinetic model of the anodic electrochemical hydrogen oxidation reaction mechanism of a solid oxide fuel cell (SOFC) is formulated. An iterative algorithm for estimating the reaction rate co...
متن کاملProperties of Random Complex Chemical Reaction Networks and Their Relevance to Biological Toy Models
We investigate the properties of large random conservative chemical reaction networks composed of elementary reactions endowed with either mass-action or saturating kinetics, assigning kinetic parameters in a thermodynamically-consistent manner. We find that such complex networks exhibit qualitatively similar behavior when fed with external nutrient flux. The nutrient is preferentially transfor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 92 6 شماره
صفحات -
تاریخ انتشار 2007